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ELIMINATION SEQUENCE OPTIMIZATION FOR SPAR

by

Harry A. Hogan

Assistant Professor of Mechanical Engineering

Louisiana Tech University

Ruston, LA 71272

SPAR is a large-scale computer program for finite

element structural analysis. The program allows user

specification of the order in which the joints of a
structure are to be eliminated since this order can have

significant influence over solution performance, in terms

of both storage requirements and computer time. An

efficient elimination sequence can improve performance by

over 50_ for some problems. Obtaining such sequences,

however, requires the expertise of an experienced user and

can take hours of tedious effort to affect. Thus, an

automatic elimination sequence optimizer would enhance

productivity by reducing the analysts' problem definition

time and by lowering computer costs.

Two possible methods for automating the elimination

sequence specification have been examined. Several

algorithms based on graph theory representations of sparse

matrices have been studied with mixed results. Significant

improvement in program performance has been achieved, but

sequencing by an experienced user still yields

substantially better results. Effort has also been

dlrected toward developing a "rational" approach whereby

the sequencing routine attempts to mimic as closely as

possible the actions of an experienced analyst.

Preliminary tests with simple example problems have

provided guardedly promising results; performance near that

of user-specified sequences has been achieved. In order to

obtain sufficient generality to handle a wide variety of

problems, however, extensive developmental work will likely

be required. Nevertheless, these initial results provide

encouraging evidence that the potential benefits of such an

automatic sequencer would be well worth the effort.
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INTROPUCTION

Much of the structural design and analysis work done

throughout NASA, as well as in industry and universities,

depends heavily on the use of large-scale finite element

programs like NASTRAN, 8PAR/EAL, and ANSYS. The power and

capability of these codes makes them indispensable tools to
workers in this area. A unique feature of SPAR/EAL ÷ is

that the user can influence program performance by

providing supplemental input data that specifies the order
in which the joints of the structure are to be eliminated.

Improvements in storage requirements, solution time, and
in some cases solution accuracy can be realized by

appropriate specification of Joint elimination sequences

For example, a recent problem being studied by Larry

Kiefling at MSFC showed a 35% decrease in solution cost

when provided with a "good" Joint elimination sequence.
The tradeoff involved is the time required by the analyst

to devise such a sequence. Two and one-half to three hours

were taken in selecting the sequence for the example cited

above. The ability to identify efficient sequences also
requires extensive experience by the user. A compeling
case can thus be made that an automatic elimination

sequencer would be of significant benefit by reducing the

analysts' problem definition time and lowering computer
costs.

+SPAR and EAL were both developed by Whetstone [1,2] and

are quite similar in capability. SPAR was developed under

contract to NASA's MSFC and LaRC, wheras EAL is

commercially marketed by Engineering Information Systems,

Inc. of San Jose, California.
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The objectives pursued in this project are summarized
as follows:

-- to become more familiar with the storage and

solution procedures employed in SPAR/EAL, with

special attention to understanding the

effects of the joint elimination sequence

-- to research possible ways to automate the

specification of efficient Joint elimination
sequences

-- to begin developing, implementing, and
evaluating promising methods for automatic

sequencing

-- to periodically assess the progress and future
prospects of such endeavors

Because of the rather uncertain nature of this work, these

objectives were pursued with a combination of sequential
and simultaneous effort.
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THE SPAR/EAL COMPUTER PROGRAM

SPAR was originally developed under contract by W. D.

Whetstone for NASA's Marshall Space Flight Center and

Langley Research Center. The program allows for both

static and dynamic analysis of large-scale (greater than

10 4 degrees of freedom) structural analysis problems.

Typical, low-order interpolation elements ranging from one-

dimensional beam and bar elements to three-dimensional

solid elements are available. The program also contains

two- and three-dimensional fluid elements. EAL was

developed subsequent to SPAR and is commercially marketed

by Engineering Information Systems, Inc., of San Jose,

California. Its capabilities are basically the same as

that of SPAR with some improvements and minor

modifications. Hence, the two will be referred to as a

single entity except when distinction is needed.

Overview

SPAR/EAL actually consists of a series of processors

and subprocessors that can be independently executed by

appropriate commands. Problem data is stored in large data

tables that are accessed by the processors and

subprocessors as needed. A schematic of the primary

processors involved in problem definition is depicted in

Figure 1 (taken from EAL Reference Manual [2]).

Processor TAB contains subprocessors that allow

specification of joint location information (TAB/JLOC),

material properties (TAB/MATC), and motion constraints

(TAB/CON). Subprocessor TAB/JSE@ provides for alternate

joint elimination sequences; the default is for the Joints

to be eliminated in the order in which they were generated

by TAB/JLOC. Processor ELD is needed to define the

particular finite elements of choice and their connection

to the joints. Processor TAN is then typically invoked to

analyze the joint and element information and calculate

statistics characterizing computer storage and solution

time requirements. System stiffness and mass matrices are

generated by other processors from "E-State" data as

indicated in Figure i. This E-State is produced by

intermediate processors utilizing the basic joint and

element data. The other major processor shown in Figure 1
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is RSI, which factors the system stiffness matrix.

Processors TAN and RSI are known as TOPO and INV,

respectively, in the SPAR version of the program.

Subsequent processors (not shown) define the loading case,

or cases, to be considered and provide solutions for the

particular load cases and constraint conditions chosen.

Processors for manipulating the data in the data tables and

for post-processing of results are also available.

Joint Elimination

Sequence

TAN datasets

I KMAP dataset

\/_ K SPAR

Constraint Definition,
CON (blank) ncon.

/_Factored System

RSI _Stlffness Hatrix,
_.,,_-_"_INV K ncon

. /_ C M_Assembled_ System

/ coo.. o,..-
/ / Matrix, C_ SPAR

_--E-State_ KG _Assembled System' _ Initial Stress .

f (Geometric) Stiffness
Matrix, KG SPAR

Figure I. Problem definition processors.
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Joint Elimination Sequence

The fundamental concepts underlying the storage and
_ulution --= ....... A k.. CDADGAT. ,,, _,_v_he_ 4n a

technical paper by Whetstone IS]. A critical aspect of

this scheme is the order in which the joints of a structure

are eliminated during solution. Stiffness matrices

produced by the overriding majority of problems are

symmetric and sparse (many zero-valued entries). As

factorization of such matrices proceeds, the process of

matrix "fill-in" occurs whereby the sparsity of the portion
of the matrix remaining to be factored is diminished. This

fill-in increases the storage requirement and number of

operations involved in factorization. Hence, computer

costs increase. Proper specification of a joint

elimination sequence can significantly reduce the amount of

fill-in incurred and consequently reduce computer costs.

Figure 2 will aid in beginning to understand the basic
mechanism of matrix fill-in. Consider the iow6r portion of

part (a.) to be a structure composed of one-dimensional
finite elements with the corresponding upper-triangular

stiffness matrix depicted above. Note that X represents

non-zero terms and O zero terms. Also recall that non-zero

terms appear in row-column locations corresponding to

interconnected joint numbers. For example, joint 1 is

connected to joints 2, 3, and 6, so non-zero terms appear

in columns 2, 3, and 6 of row 1. The lower portion of part

(b.) contains a "graphical analog" of the joint elimination

process. The elimination of joint 1 creates new
interconnections between joints 3 & 8, 3 & 2, and 2 & 6

that did not previously exist. Thus, new non-zero terms

enter into the matrix accordingly, as seen in the upper

portion of part (b.). Part (c.) contains the same
information for the elimination of joint 2. Note that the

total number of new non-zeroes associated with the

elimination of these two joints is five. It can be

verified easily that if the first two Joints eliminated

were joint S and then joint I, then the total number of new

non-zeroes introduced would be one. Even a simple example
like this serves to demonstrate the substantial benefits

offered by a "good" joint elimination sequence.

Recognizing the benefits derived from proper joint

elimination sequencing is the easy part of the problem;

devising sequences that exploit these benefits is the

difficult part. In the 1978 version of the Reference
Manual for SPAR [I] mention is made of an automatic

elimination sequencer planned for future development.

Guidelines are then given for manual sequencing. They can
be summarized as follows:
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4 6

5 2

1234567
 xxoox6

XOOXO0
XO000:

XOOX
XOX

XX
X

(a.)

234567
8 | 8 8 8 |

 xoxxd
XOOXO

XOX
XX

X

34567
lllll

I I I I I
I"v a,.u _w _ ..,I

lO0
X X

X

4 6

5 2

(b.)

4 6

5 (2)

(C.)

Figure 2. Joint elimination and matrix fill-in.

(1)

(2)

(3)

Carefully studF Whetstone's original paper [3]

and learn how to determine favorable sequences.

Consult an experienced user of SPAR.

Use a numberinE sequence appropriate for band-
matrix or wavefront procedures.
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Comment is included with these recommendations that

band-matrix and wavefront methods are different from those

employed in SPAR yet results may be satisfactory for

problems of small to moderate size. Experience indicates
that results are erratic and indeed generally not very good

for larEer problems. Nevertheless, current versions of EAL

have a new processor called SEQ (see Figure 1) that

implements the widely-used GPS [4] bandwidth minlmizinE

method. For review, bandwidth and profile storage schemes

are presented in Figure 3. Only the terms enclosed by the

curves are stored and operated upon. Wavefront methods

utilize profile storaEe and and can realize improved

performance by profile-reducing algorithms.

'1 2 3 4 5 6 7 B 9

,,,_ X 0 X
l ",,x o o x

L

1234_6789
o'oooo6

000
O0

,,_ 0 0 X

Bandwidth = 5 Profilm " 26

Figure 3. Bandwidth and profile storage schemes.

Automatic SeQuencin=

Need remains for an automatic joint elimination

sequencer that will:

-- generate a favorable sequence with minimum
user input

-- handle a wide variety of problem types and

configurations.

Two seeminEly promising approaches for tackling this

problem have been identified and will be described in the
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next two sections. Algorithms based on graph theory have

been developed in recent years for manipulating sparse

matrices. Moderate success has been reported for some

problems, but no such methods exist for exploiting the

particular storage and solution methods used in SPAR/EAL.

A "rational" method is also being pursued whereby the

actions of an experienced user are imitated as closely as

possible.
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GRAPH THEORY METHODS

Fundamental Concerts

Graph theory is an abstract mathematical theory that

has found application in areas as diverse as map coloring,

route planning for traveling salesmen, and sparse matrix

manipulation. Only a cursory introduction to the very
basic concepts and definitions will be attempted here.

A_raDh is defined as a finite set of nodes or

vertices together with a finite set of edKes. An edge is

simply an unordered pair of vertices. A labelled or

Qrdered graph has a one-to-one mapping of successive

integers (i, 2, 3, ..., N) onto the set of N vertices.

Graphs are commonly represented pictorially by points or
small circles for vertices and lines or curves between

points for edges.

A pair of vertices is addacent if the pair form an

edge of the graph. If X is the set of vertices of a graph
and Y is some set of vertices that is a subset of X, then

the adjacency set of Y is the set of vertices that are

members of X and are adjacent to at least one vertex in Y.

In the simplest case, the set Y is a single vertex and the

adjacency set consists of all nodes adjacent to this
vertex. The de_ree of Y is defined to be the number of

members in the adjacency set.

Application to Svarse Matrices

The particular application of graph theory to sparse

matrices [5,6] that will be examined is that for sparse

matrices arising from finite element analysis. Figure 4

illustrates the interrelationships between sparse matrices,

their corresponding labelled graphs, and the finite element

structures giving rise to such matrices.

The lowermost portion of part (a.) depicts a one-

dimensional finite element mesh with a schematic

representation of its stiffness matrix immediately above.
As before, X simply indicates a non-zero term and 0 a zero

term. The structure of the matrix again takes its form

from the connectivity of the finite element structure. The

relationship between a labelled graph and its corresponding

matrix representation is defined in a quite similar manner.
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In this case, non-zero terms enter each row of the matrix

in columns matching the labels of the vertices in the

adjacency set of the vertex labelled with the row number.

Non-zero terms also appear on the diagonal for each vertex.

The labelled graph for part (a.) of Figure 4 is the

uppermost item. As apparent from the figure, the pictorial

representations of the graph and finite element mesh for a

given matrix are essentially the same for one-dimensional

finite elements. Part (b.) of Figure 4 contains the
respective three items for a mesh of two four-noded two-

dimensional finite elements. The only difference of note
is that the pictorial representations of the finite element

mesh and the graph are not the same. Any two nodes common

to an element are interconnected structurally and the

matrix contains non-zero terms indicating so. The labelled

graph indicates this same interconnection by having edges
between corresponding pairs of vertices.

4

3 5

1

1 2 3

123456
 xoxx6

XOOXO!
XOOX

XOX
xxl

- X!

2

4 1

(a.)

123456
 xoxxd

X X X X X
XGXX

XXO
X X

X

4 5

. 2

(b.)

b

[
3

Figure 4. Matrices and labelled graphs for finite elements.

(a.) One-dimensional finite element case.

(b.) Two-dimensional finite element case.

XXIII-IO



The computer representation of a labelled graph
consists primarily of two vectors. One vector contains the

entries in the adjacency set of each vertex arranged
sequentially. The other contains pointers to the locations

in the first vector of the beginning of the adjacency set
of each vertex. The adjacency sets and degrees for each

vertex in. the graphs of Figure 4 are presented in Figure 5
below.

vertex adjacency degree vertex adjacency degree

(1) 2 4 5 o_ (''-; 245 3

(2) ' 1 5 2 (2) 1 3 4 5 6 5

(3) 6 1 (3) 2 5 6 3

(4) 1 6 2 (4) I 2 5 3

(5) 1 2 6 3 (5) 1 2 S 4 6 5

(6) 3 4 5 3 (6) 2 3 5 3

Figure 5. Adjacency and degree of labelled graphs.

A comprehensive treatment of sparse matrix

manipulation algorithms based upon graph theory concepts

is presented by George and Liu [6]. Several of the

algorithms described in this book have been incorporated

into an experimental processor for EAL known as RSEQ. The

development of RSEQ is spearheaded largely by Sue McCleary

and William Greene of NASA's Langley Research Center.

Their generosity in making this processor available for the

present work is gratefully acknowledged. Having these

algorithms already implemented and operational has been

extremely helpful.

The three algorithms that have been included in this

study are the Reverse-Cuthill-McKee, Minimum Degree, and

Nested Dissection algorithms. The Reverse-Cuthill-McKee

algorithm is basically a profile minimizing method. A

labelling is first determined by the Cuthill-McKee method
and then reversed. The Cuthill-McKee approach involves

successively numbering the unnumbered neighbors of vertices
in order of increasing degree. It is very sensitive to the

choice of a starting vertex. Fairly successful algorithms

exist for finding such a vertex.
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Both the Minimum Degree and Nested Dissection methods

attempt to reduce matrix fill-in. The Minimum Degree

approach involves the use of elimination _ravhs, which are

graph theory representations corresponding to the reduced

structures depicted in Figure 2. Labelling consists of

choosing the vertex in each elimination graph having the
minimum degree to be the one eliminated next. Nested

Dissection makes use of a sevarator, which is simply a set

of vertices whose removal from a graph forms two graphs.

Removing separators from graphs affects a partitioning of

the accompanying matrix representation of the graph. The
Nested Dissection method seeks to find separators that

partition the matrix such that all-zero submatrices remain
so throughout factorization.

Such brief descriptions of these methods belie their

true complexity. The reader is referred to the books by

Pissanetsky [5] and George and Liu [6] for more thorough
presentations of these methods. It should also be

emphasized that these algorithms were not developed to

exploit the particular features of the storage and solution

scheme employed by SPAR/EAL. In fact, they include
recommendations for storage and solution _h_m_ q,,4÷._I_
for each.
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A RATIONAL APPROACH

Initial Ideas

The basic approach decided upon for pursuing a method

to imitate an experienced user involves evaluating the
structural topology of the finite element mesh and

identifying all "branches" and "holes" in the mesh. The

shaded region shown in Figure 6 represents a structure

containing such features. Numbering nodes would then

proceed so as to eliminate the branches first and then

reduce the remaining structure by eliminating nodes

"radially" thereby progressing "around" the hole. Initial

efforts have been concentrated on developing methods for

identifying and eliminating branches.

Figure 6. A region with branches and holes.

Branch Elimination

The branch elimination procedure is summarized in the

functional flowchart of Figure 7. For this phase of
development, the finite element mesh is assumed to be free
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Identify & Sort
- edge nodes
- corner nodes

- edge elements

Identify & Characterize Branches

- I-O.O-I, O-O-O-I, I-O-O-O pattern
- determine length & width

- determine branch size (length X width)

Order Branches

- largest last
- thinnest next-to-last

- others sequentially

Shrink Branches

- inward from outer edge

- stop before last

ICheck Reduced Grid

• J. No

|

Finish Sequencing

- "body" first
- last branch

(outward from base)

Yes

Figure 7. Branch shrinker flowchart.
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of any "holes" and composed of four-node two-dimensional

elements. The first block involves characterization of the

edge of the finite element mesh. To accomplish this, all

no_ located R]_ng the edge are identified by counting the
number of elements to which each node is common. For four-

node elements, all nodes common to three or fewer elements

will be on the edge of the domain. This information is

then used to identify all edge elements, i.e. elements

containing edge nodes. Corner nodes are those common to
either one or three elements, with the former being marked

as "outer" corners and the latter as "inner" corners. Edge
nodes are also sorted in order of occurrence around the

periphery of the mesh.

The next main task is that of identifying branches.

This is simply done by scanning the sorted list of corner

nodes and defining a branch to be represented by one of the

following patterns of inner(I) and outer(O) corners:

I-0-0-I, 0-0-0-I, or I-0-0-0. The length of each branch is
determined as the minimum number of elements from the

"base" of the branch to its end, while the width is the
number of elements between the two outside corners at its

end. An indication of the "size" of each is also

calculated by taking the product of the length and width.

Branch elimination order is determined by first

reserving the largest branch for elimination last. The

branch with the smallest width is designated to be

eliminated second-to-last. The remaining branches are then

ordered with the same sequence with which they were

initially identified. Next, each branch is eliminated in

order by numbering the nodes as the branch is scanned
across its width from the outer end to the base. All are

eliminated in this manner except the last (largest) branch.

At this point, the reduced mesh is rechecked for branches

and all branches are eliminated in order, except the last.

This procedure is repeated until only a rectangular domain

remains with the last branch forming three sides. This

rectangle is then sequenced by scanning across its width

but proceeding from the region at the base of the last

branch toward the outer end of this branch.
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EXAMPLE PROBLEMS

The graph theory algorithms and rational approach were

evaluated for two examples. Both examples are relatively

simple two-dimensional problems with four-node finite

elements. Each also contains a variety of branches but no

holes. The jobs were run using EAL on a VAX 11/785 super

minicomputer. This version of EAL also contains the

experimental processor RSEQ. For the automatic sequencer

implementing the rational approach, Joint elimination data

was generated independent of EAL and then incorporated into
the problem input data using the subprocessor TAB/JSEQ.

Figure 8 contains a diagram of the finite element mesh

along with a summary of results for this problem. The data

denoted "none" refer to the case of no particular sequence
being specified. The joints are eliminated in whatever

sequence they happen to be generated by TAB/JLOC. SEQ
indlcate_ re_u!t_ from the bandwidth minimizing a!g _+_

included with recent versions of EAL. The cases designated

RCM, MD, and ND refer to the RSEQ methods of Reverse-

Cuthill-McKee, Minimum Degree, and Nested Dissection,

respectively. Results from the automatic sequencer using

the rational approach are denoted by "Auto" wheras "L.K."

indicates results from sequencing by an experienced user.

The first two columns of results contain the maximum

and average interconnectivity encountered during the

factorization process. Recall that interconnectivity

generally increases as joints are eliminated; hence, lower
numbers indicate less matrix fill-in. The last two columns

are cost indices associated with computer storage and the

number of operations required to factor the matrix and then

solve the factored system, respectively. Note that the

methods of MD, Auto, and L.K. show particularly better

results than the others. Further, all four parameters are

significantly lower for Auto and L.K. compared to MD.

These encouraging results suggest that further pursuit of
more general rational methods should continue.

Figure 9 contains the finite element mesh and

summarized results for the other example studied. The

results are quite similar with two apparent differences.

First, no results were available for an experienced user.

Also, the differences between the top three performers,

Auto, MD, and RCM, are not as large as with the first

example. Nevertheless, the trend is similarly encouraging.
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II il li

Method

none

SEQ

RCM

MD

ND

•Auto

L.K.

Interconnect

Max

24

20

23

19

31

13

12

AvE

15.2

11.3

10.8

8.5

11.2

7.9

7.8

IC1

3162_

17178

16205

9511

17502

7690

7449

IC2

3161

2360

2252

1766

2338

1639

1617 -

Figure 8. Mesh layout and results for example i.
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Method

none

SEQ

RCM

MD

ND

Auto

Figure 9.

Interconnect

Max Avg

41 22.8

20

18

16

33

13

9.3

8.8

8.3

11.1

7.8

IC1

119152

17550

15006

13179

25953

11428

IC2

7223

2949

2778

2626

3532

2469

Mesh layout and results for example 2.
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CONCLUSIONS AND RECOMMENDATIONS

The encouraging results from this preliminary

study of automatic Joint elimination sequencing methods for
SPAR/EAL indicate that further investigation is warranted.

Admittedly, the problems examined are limited in scope and

complexity, but the potential benefits of a successful
scheme seem substantial enough to spur further effort.

One promising method that was encountered in this

study, though not implemented yet, is the one-way
dissection method [7]. This method has found some

acceptance and use in finite element analysis programs and
may prove useful for SPAR/EAL as well. Other avenues that

may prove worthy of pursuit include structural pattern

recognition [8], computer graphics a!gorithms, and even

perhaps expert system applications. With enough time and

attention, the prospects for developing a useful automatic

joint elimination sequencer appear fairly bright at this

juncture.
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